

Letters

Comments on “Power-Handling Capability of the Rhombic Waveguide”

Patricia A. A. Laura and Liberto Ercoli

The purpose of the present correspondence is two fold: first to congratulate the author for his important contribution [1] and the second to present some considerations regarding the solution of Helmholtz equation as well as other wave-type equations in rhombic domains.

It seems possible to use Overfelt's approach in unsteady diffusion problems in rhombic domains. This is certainly an interesting possibility since no analytical solutions are available in that area. On the other hand several publications which deal with vibrating rhombic plates are available in the open literature [2]–[4]. The conformal mapping approach has been applied in [2]–[5] and also in [6] in order to obtain the fundamental cut-off frequency of a waveguide of rhombic boundary with a concentric circular hole (TM modes).

REFERENCES

- [1] P. L. Overfelt and C. S. Kenney, “Power-handling capability of the rhombic waveguide,” *IEEE Trans. Microwave Theory Tech.*, vol. 38, no. 7, pp. 934–941, July 1990.
- [2] P. A. A. Laura and J. Grosson, “Fundamental frequency of vibration of rhombic plates,” *J. Acoust. Soc. Am.*, vol. 44, pp. 823–824, 1968.
- [3] A. W. Leissa, “Vibration of plates,” NASA SP 160, 1969.
- [4] K. M. Liew and K. Y. Lam, “Application of two-dimensional plates function to flexural vibrations of skew plates.”
- [5] P. A. A. Laura and R. H. Gutierrez, “Vibrations of rhombic plates subject to an in-plane state of hydrostatic stress and carrying a concentrated mass,” Institute of Applied Mechanics, Publication no. 91-27, Bahía Blanca, Argentina, 1991.
- [6] —, “Determination of the fundamental eigenvalue of a rhombic membrane with a concentric circular hole,” *J. Sound and Vibration*, vol. 153, 1992, (to be published.)

Manuscript received November 21, 1991.

The authors are with the Instituto de Mecánica Aplicada (CONICET—SENID—ACCE) Gorriti 43—8000 Bahía Blanca, Argentina.
IEEE Log Number 9200866.

Reply to Comments on “Power-Handling Capability of the Rhombic Waveguide”

P. L. Overfelt and C. S. Kenney

The authors would like to thank Patricia A. A. Laura and Liberto Ercoli for their comments and suggestions on the rhombic waveguide problem [1]. Since the time period in which that work was completed, we have found that the infinite series of nonseparable solutions technique can be applied to most linear partial differential equations with constant coefficients. Thus boundary value prob-

Manuscript received January 22, 1992.

The authors are with the Naval Air Warfare Center, Research Department, China Lake, CA 93555.
IEEE Log Number 9200867.

lems for complex geometries governed by the Laplace, diffusion, free-particle Schrödinger, etc. equations can be solved using this method. However we have always assumed the usual Dirichlet and Neumann boundary conditions and do not know how the method would perform for more complicated boundary conditions. The idea of applying our approach to unsteady diffusion problems in rhombic domains is a fascinating one.

For many years we have been aware of Professor Laura's work on eigenvalues of waveguides with complicated geometries [2], [3] but were unaware of his work on rhombic plates and membranes (see above [2], [5], and [6]). We are grateful for having these references pointed out.

REFERENCES

- [1] P. L. Overfelt and C. S. Kenney, “Power-handling capability of the rhombic waveguide,” *IEEE Trans. Microwave Theory Tech.*, vol. MTT-38, pp. 934–941, July 1990.
- [2] P. A. Laura, “Calculations of eigenvalues for uniform fluid waveguides and complicated cross sections,” *J. Acoust. Soc. Am.*, vol. 42, no. 1, pp. 21–26, 1967.
- [3] M. Chi and P. A. Laura, “Approximate method of determining the cutoff frequencies of waveguides of arbitrary cross section,” *IEEE Trans. Microwave Theory Tech.*, vol. MTT-12, pp. 248–249, Mar. 1964.

Comments on “Spectral-Domain Computation of Characteristic Impedances and Multiport Parameters of Multiple Coupled Microstrip Lines”

Smain Amari

In the above mentioned paper [1] the authors present an extensive discussion of the problem of systems of coupled lines. The spectral domain technique is used to extract the dispersion relations of the structure along with the corresponding current densities on the different lines. However, in equation (7) page 216, they state that the eigencurrent matrix $[M_I]$ and the corresponding eigen-voltage matrix $[M_v]$ are related by

$$[M_v] = [[M_I]^T]^{-1}. \quad (1)$$

(Equations in this article are referred to as eqn.n whereas those in the authors's paper as equation (n)). I should hasten to say that this is not the first time this equation has been mentioned. Indeed Marx [2] states, as do the authors, that this relation holds if the both eigencurrents and eigenvoltages are normalized (for each mode). This mathematical statement cannot be disputed. The point that the authors failed to see is to examine the meaning of the normalization itself for the problem under consideration. Is it POSSIBLE to normalize both currents and voltages SIMULTANEOUSLY?. For the

Manuscript received October 22, 1992.

The author is with the Department of Physics, Washington University, St. Louis, MO 63130.
IEEE Log Number 9200868.